

2SK209

TOSHIBA

Dist.

2

2SK209

10

TOSHIBA Field Effect Transistor Silicon N Channel Junction Type

2SK209

Audio Frequency Low Noise Amplifier Applications

- High |Y_{fg}|: |Y_{fg}| = 15 mS (typ.) at V_{DS} = 10 V, V_{GS} = 0
- High breakdown voltage: VGDS = -60 V
- Low mise: NF = 1.0dB (typ.)
- at $V_{DS} = 10 V$, $I_D = 0.5 mA$, f = 1 kHs, $R_G = 1 k\Omega$
- High input impedance: IGSS = -1 nA (max) at VGS = -80 V
- Small package

Absolute Maximum Ratings (Ta = 25°C)

Characteristica	Symbol	Reting	Unit
Gate-drain voltage	VGDS	60	v
Gate current	lg	10	mA
Drain power dissipation	Po	160	mW
Junction temperature	դ	125	Ŷ
Storage temperature range	Tele	-55 to 125	°C

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the algolificant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the abaolute maximum ratinga. Please design the appropriate reliability upon reviewing the Toshibe Semiconductor Reliability Handbook ("Handling Precautions"/ Densing Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Weight 0.012 g (typ.)

Electrical Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gaia aut-off current	lgaa	V _{GS} = -30 V, V _{DS} = 0	—	—	-1.0	nA
Gate-drain breakdown voltage	V (BR) GDS	V _{D6} = 0, kg = -100 μA.	-50	—	—	۷
Drain current	ipes (Nala)	V _{D8} = 10 V, V _{B8} = 0	1.2	-	14.0	mA
Gate-source cut-off voltage	VGS (OFF)	V _{DS} = 10 V, I _D = 0.1 μA	-0.2	-	-1.6	V
Forward transfer admittance	1Ym	VD6 = 10 V, VO6 = 0, f = 1 kHz	4.0	15	—	mB
Input capacitance	Cus	V _{D8} = 10 V, V _{G8} = 0, f = 1 MHz	—	13	—	pF
Reverse transfer capacitance	Crass	Vog = 10 V, lo = 0, f = 1 MHz	_	3	—	pF
Noise figure	NF (1)	Vps=10 V, Rg=1 kΩ lp=0.5 mA, 1=10 Hz	-	5	-	dB
Noise figure	NF (2)		-	1	-	dB

Note: IDSS classification Y: 1.2~3.0 mA, GR: 2.6~6.5 mA, BL: 6.0~14 mA

15 Cents each on a reel of 3000

PNP Epitaxial Silicon Transistor

Absolute Maximum Ratings Ta=25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{CBO}	Collector-Base Voltage	-120	V
V _{CEO}	Collector-Emitter Voltage	-120	V
V _{EBO}	Emitter-Base Voltage	-5	V
I _C	Collector Current	-50	mA
I _B	Base Current	-10	mA
Pc	Collector Power Dissipation	500	mW
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-55 ~ 150	°C

Electrical Characteristics Ta=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
I _{CBO}	Collector Cut-off Current	V _{CB} = -120V, I _E =0			-50	nA
ICEO	Collector Cur-off Current	V _{CE} = -100V, I _B =0			-1	μA
IEBO	Emitter Cut-off Current	V _{EB} = -5mA, I _C =0			-50	nA
h _{FE1}	DC Current Gain	V _{CE} = -6V, I _C = -0.1mA	150	500		
h _{FE2}		V _{CE} = -6V, I _C = -1mA	200	500	800	
V _{BE} (on)	Base-Emitter On Voltage	V _{CE} = -6V, I _C = -1mA	-0.55	-0.61	-0.65	V
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = -10mA, I _B = -1mA		-0.09	-0.3	V
f _T	Current Gain Bandwidth Product	V _{CE} = -6V, I _C = -1mA	50	100		MHz
Cob	Output Capacitance	V _{CB} = -30V, I _E =0, f=1MHz		2	3	рF
NV	Noise Voltage	V _{CE} = -5.0V, I _C = -1.0mA,		25	40	mV
		$R_{G} = 100 KW, G_{V} = 80 dB,$				
		f = 10Hz to 1.0KHz				

h_{FF2} Classification

Classification	P	F	E
h _{FE2}	200 ~ 400	300 ~ 600	400 ~ 800

\$7.00/100 Under 3 Cents In quantity

©2004 Fairchild Semiconductor Corporation

LINEAR SYSTEMS

Linear Integrated Systems

FEATURES			
ULTRA LOW NOISE (f = 1kHz)	e _n = 0.9nV/√Hz		
HIGH BREAKDOWN VOLTAGE	BV_{GSS} = 40V max		
HIGH GAIN	Y _{fs} = 22mS (typ)		
HIGH INPUT IMPEDANCE	I _G = -500pA max		
LOW CAPACITANCE	22pF max		
IMPROVED SECOND SOURCE REPLACEM	ENT FOR 2SK170		
ABSOLUTE MAXIMUM RATINGS ¹			
@ 25 °C (unless otherwise stated)			
Maximum Temperatures			
Storage Temperature	-65 to +150 °C		
Operating Junction Temperature -55 to +135 °C			
Maximum Power Dissipation			
Continuous Power Dissipation @ +125 °C	400mW		
Maximum Currents			
Gate Forward Current	$I_{G(F)} = 10 \text{mA}$		
Maximum Voltages			
Gate to Source	$V_{GSS} = 40V$		
Gate to Drain	V _{GDS} = 40V		

LSK170

ULTRA LOW NOISE SINGLE N-CHANNEL JFET

*For equivalent monolithic dual, see LSK389 family.

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC		MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown	/oltage	40			V	$V_{DS} = 0$, $I_D = 100 \mu A$
V _{GS(OFF)}	Gate to Source Pinch-off Vo	tage	0.2		2	V	$V_{DS} = 10V, I_D = 1nA$
V _{GS}	Gate to Source Operating Vo	oltage		0.5		V	$V_{DS} = 10V$, $I_D = 1mA$
		LSK170A	2.6		6.5		
IDSS	Drain to Source Saturation	LSK170B	6		12	mA	$V_{\text{DG}} = 10V$, $V_{\text{GS}} = 0$
	ounom	LSK170C	10		20		
lg	Gate Operating Current				0.5	nA	$V_{DG} = 10V$, $I_D = 1mA$
I _{GSS}	Gate to Source Leakage Cu	rent			1	nA	$V_{DG} = 10V$, $V_{DS} = 0$
Y _{fss}	Full Conduction Transcondu	ctance		22		mS	V _{GD} = 10V, V _{GS} = 0, f = 1kHz
Y _{fs}	Typical Conduction Transcol	nductance		10		mS	V_{DG} = 15V, I_D = 1mA
e _n	Noise Voltage			0.9	1.9	nV/√Hz	$V_{DS} = 10V$, $I_D = 2mA$, $f = 1kHz$, NBW = 1Hz
e _n	Noise Voltage			2.5	4	nV/√Hz	$V_{DS} = 10V$, $I_D = 2mA$, $f = 10Hz$, NBW = 1Hz
CISS	Common Source Input Capa	citance		20		рF	Vec = 15V la = 500uA
C _{RSS}	Common Source Reverse T	ansfer Cap.		5		рF	V _{DS} = 10V, 1 <u>0</u> = 300μ Α

1. Absolute maximum ratings are limiting values above which serviceability may be impaired.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third paties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

22 mS .9nV^hZ \$3.00 available and 4 cost less than a vacuum tube

Front End Gain = Yfs*750 Yfs 25 750/(1/Yfs + 10) =15 Q2 cascode has no gain Because it shares R2 with Q1

dB to 23.5/20 = 1.175 10^1.175 = 15

4.80/.3 =16

10 KHz square wave response of front end.

Input gain 16 Vas 50 Q14,Q9 27+3 = 30*500 15000/2=7500 7500/150 = 50 50 * 16 = 800 58 dB open loop

AC - New, DiscreteOpAmpLSK170.Sch, 17 September 2018

AC - New, DiscreteOpAmpLSK170.Sch, 17 September 2018

AC - New, DiscreteOpAmp1.Sch, 07 September 2018

AC - New, BA2018Comp3K.Sch, 26 September 2018

FREQUENCY RESPONSE

Dist209_TwoCH.at1

.0003% simulated .0006% actual includes noise

Symbol	Par	ameter	Ratings	Units
V _{CBO}	Collector-Base Voltage	: KSA1220	- 120	V
		: KSA1220A	- 160	V
V _{CEO}	Collector-Emitter Voltage	: KSA1220	- 120	V
		: KSA1220A	- 160	V
V _{EBO}	Emitter-Base Voltage		- 5	V
I _C	Collector Current (DC)		- 1.2	A
I _{CP}	*Collector Current (Pulse)		- 2.5	A
I _B	Base Current		- 0.3	A
Pc	Collector Dissipation (Ta=25°C)		1.2	W
Pc	Collector Dissipation (T _C =25°C)		20	W
Тј	Junction Temperature		150	°C
T _{STG}	Storage Temperature		- 55 ~ 150	°C
* PW<10me_Duty Cv	nle<50%			

Electrical Characteristics Tc=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
сво	Collector Cut-off Current	V _{CB} = - 120V, I _E = 0			- 1	μA
EBO	Emitter Cut-off Current	V _{EB} = - 3V, I _C = 0			- 1	μA
FE1	* DC Current Gain	V _{CE} = - 5V, I _C = - 5mA	35	150		
FE2		V _{CE} = - 5V, I _C = - 0.3A	60	140	320	
√ _{CE} (sat)	* Collector-Emitter Saturation Voltage	I _C = - 1A, I _B = - 0.2A		- 0.4	- 0.7	V
V _{BE} (sat)	* Base-Emitter Saturation Voltage	I _C = - 1A, I _B = - 0.2A		- 1	- 1.3	V
fτ	Current Gain Bandwidth Product	V _{CE} = - 5V, I _C = - 0.2A		175		MH:
Cob	Output Capacitance	V _{CB} = - 10, I _E = 0 f = 1MHz		26		pF
ulco Toot: DM/2	50up, Duty Cycle (29), Buland					
Pulse Test: PW≤3 FE Class Classif	50µs, Duty Cycle⊴2% Pulsed sification					

Pin configuration drops in To use as an output transistor To drive heavier loads. Emitter resistors can be smaller For higher bias. Be careful on direction of pinout.

©2001 Fairchild Semiconductor Corporation

Rev. A1, June 2001

KSA1220/1220A

Audio Precision

FREQUENCY RESPONSE

